J.P. Dahl : Introduction to the Quantum World of Atoms and Molecules. |
![]() |
| Jens P. Dahl : Introduction to The Quantum World of Atoms and Molecules. World Scientific Publishing, Singapore, 2001. Price (Oct. 2002) $ 77.00 - EUR 83.50 |
Contents
Preface ....................................................................... v
1 The Rise of Atomic Theory ................................................... 1
1.1 Early Atomic Theories ................................................... 2
1.2 The Chemical Atom ...................................................... 3
1.3 The Kinetic Molecule .................................................... 4
1.4 The Spectroscopic Atom .................................................. 7
1.5 Antiatomism ............................................................. 9
1.6 The Discovery of the Electron. The Planetary Atom ....................... 10
1.7 The Constituents of Atoms and Molecules. The Modern View ................ 13
1.8 External Interactions. Photons .......................................... 16
2 The Birth of Quantum Mechanics .............................................. 20
2.1 Black-Body Radiation and Planck's Discovery ............................. 21
2.2 Photons and the Photoelectric Effect .................................... 27
2.3 The Photon is a Relativistic Particle ................................... 31
2.4 The Heat-Capacity Problem ............................................... 33
2.5 Bohr's Theory of the Hydrogen Atom ...................................... 37
2.6 De Broglie Waves ........................................................ 43
3 Wave Mechanics .............................................................. 50
3.1 The Time-Dependent Schrödinger Equation ................................. 51
3.2 The Time-Independent Schrödinger Equation ............................... 54
3.3 Schrödinger Operators ................................................... 55
3.4 The Statistical Interpretation ..........................................
4 Particle in a Box ........................................................... 61
4.1 Introduction ............................................................ 62
4.2 The One-Dimensional Box ................................................. 65
4.3 Orthogonality of Wavefunctions .......................................... 70
4.4 Number of Nodes Versus Energy ........................................... 72
4.5 Inversion Symmetry ...................................................... 72
4.6 The Three-Dimensional Box ............................................... 75
4.7 The Concept of Degeneracy ............................................... 76
4.8 The Free-Electron Model ................................................. 82
4.9 Non-Stationary States ................................................... 87
5 Quantum-Mechanical Operators ................................................ 93
5.1 The Bra-Ket Notation .................................................... 94
5.2 Linear Operators. The Commutator ........................................ 97
5.3 Hermitian Operators. Hermitian Conjugation .............................. 101
5.4 Some Properties of Hermitian Operators .................................. 107
5.5 Expectation Values and Uncertainties .................................... 111
5.6 The Particle in a Box Revisited ......................................... 114
5.7 Commuting Hermitian Operators ........................................... 117
5.8 The General Uncertainty Principle ....................................... 120
5.9 Quantum Theory and Measurements ......................................... 121
5.10 Matrix Algebra ......................................................... 125
6 The Free Particle ........................................................... 133
6.1 The Stationary States of the Free Particle .............................. 134
6.2 Non-Stationary States of the Free Particle .............................. 139
6.3 The Gaussian Wave Packet ................................................ 143
6.4 From One to Three Dimensions ............................................ 145
7 The Harmonic Oscillator ..................................................... 147
7.1 Definitions ............................................................. 148
7.2 The Schrödinger Equation for the Harmonic Oscillator .................... 149
7.3 Solving the Schrödinger Equation ........................................ 151
7.4 The Wavefunctions ....................................................... 155
7.5 The Algebraic Method .................................................... 158
8 The Central Field Problem ................................................... 165
8.1 The Reduced Mass of a Two-Body System ................................... 167
8.2 Spherical Polar Coordinates ............................................. 171
8.3 Spherical Harmonics ..................................................... 174
8.3.1 The Dimensionless Angular-Momentum Operators ......................... 175
8.3.2 Looking for Common Eigenfunctions of ^l2 and ^lz ..................... 176
8.3.3 The Raising and Lowering Operators ................................... 178
8.3.4 The Quantum Number l ................................................. 180
8.3.5 A Phase Convention ................................................... 181
8.3.6 The Analytical Expressions ........................................... 183
8.4 The Radial Function P(r) ................................................ 186
9 The Hydrogen Atom .......................................................... 192
9.1 The Effective Potential. General Notation ............................... 193
9.2 The Radial Equation for the Hydrogen-Like Atom .......................... 195
9.3 The Normalized Radial Functions ......................................... 201
9.4 Radial Probability Densities ............................................ 203
9.5 The Complete Wavefunctions .............................................. 208
10 The Spinning Electron ....................................................... 218
10.1 General Angular Momentum Theory ........................................ 220
10.2 Spin, Spin Functions and Spin-Orbitals ................................. 222
10.3 Properties of the Spin One-Half Operators .............................. 226
10.4 The One-Electron Atom in External Fields ............................... 230
10.4.1 The Hamiltonian With Spin .......................................... 230
10.4.2 The Hamiltonian With Spin Included ................................. 232
10.4.3 The Refined Hamiltonian ............................................ 234
10.5 The Zeeman Effect ...................................................... 239
10.6 The Pauli Equation ..................................................... 241
10.7 Angular-Momentum Theory and Rotations .................................. 242
11 The Periodic Table by Electron Counting ..................................... 24.
11.1 The Many-Electron Atom ................................................. 247
11.2 Neglect of Electron-Electron Repulsion ................................. 249
11.3 The Aufbau Principle ................................................... 252
11.4 Exchange Degeneracy .................................................... 254
11.5 Pauli's Exclusion Principle. Slater Determinants ....................... 257
11.6 Including Electron-Electron Repulsion .................................. 260
11.7 Slater Type Orbitals ................................................... 261
12 The Variational Method ..................................................... 270
12.1 Introduction .......................................................... 270
12.2 Variational Principles ................................................ 271
12.3 The Time-Independent Schrödinger Equation ............................. 272
12.4 The Variational Method ................................................ 274
12.5 The Linear Variational Method ......................................... 279
12.6 Factorization of Secular Problems ..................................... 283
13 Diatomic Molecules ......................................................... 289
13.1 The Adiabatic Approximation ........................................... 290
13.2 One-Electron Diatomic Molecules ....................................... 3..
13.4 The Homonuclear Oase. Ground State of H ............................... 305
13.5 LCAO-MOs for Homonuclear Diatomics .................................... 314
13.6 Electronic Structure of Homonuclear Diatomics ......................... 318
14 Vibration and Rotation of Diatomic Molecules ............................... 324
14.1 Introduction .......................................................... 321
14.2 The Vibrational Motion ................................................ 321
14.3 The Vibrating Rotator ................................................. 334
14.4 On Rotational and Vibrational Spectra ................................. 338
15 Atomic Term Symbols ........................................................ 341
15.1 Orthonormal Bases and Unitary Matrices ................................ 342
15.2 Coupling of Two Angular Momenta ....................................... 345
15.2.1 The Uncoupled Representation ........................................ 345
15.2.2 The Coupled Representation .......................................... 348
15.3 Vector-Coupling Coefficients by the Construction Method .............. 351
15.3.1 Coupling of Two Spin ½ Particles .................................. 353
15.3.2 Coupling of Spin and Orbital Angular Momentum ..................... 355
15.4 Angular Momenta in Many-Electron Atoms ................................ 356
15.4.1 The Total Orbital Angular Momentum ................................ 357
15.4.2 The Total Spin Angular Momentum ................................... 358
15.4.3 L-S Coupling ...................................................... 360
15.4.4 Adding the Nuclear Angular Momentum. Bose—Einstein Condensates .... 362
16 Atomic Terms. Wavefunctions and Energies .................................... 367
16.1 Operating on Slater Determinants ....................................... 368
16.2 Term Wavefunctions ..................................................... 370
16.2.1 The Helium Atom .................................................... 370
16.2.2 The Carbon Atom ................................................... 373
16.3 Matrix Elements Between Slater Determinants ............................ 374
16.4 Energies of Atomic Terms ............................................... 380
16.4.1 The Helium Atom .................................................... 382
16.4.2 The Beryllium Atom ................................................. 383
16.4.3 The Carbon Atom ................................................... 384
16.5 Hund's Rules ........................................................... 385
17 Electronic Terms of Diatomic Molecules ...................................... 388
17.1 The Oxygen Molecule. Term Analysis ..................................... 388
17.2 The Oxygen Molecule. Real Wavefunctions ................................ 391
17.3 The Oxygen Molecule. Term Energies ..................................... 392
18 The Hartree-Fock Method ..................................................... 396
18.1 Hartree—Fock Method for a Single Determinant ........................... 397
18.2 Spin Restrictions ...................................................... 404
18.3 Conventional Hartree—Fock Theory ....................................... 407
18.4 The Correlation Problem ................................................ 410
19 Density-Functional .......................................................... 412
19.1 Reduced Density Matrices ............................................... 413
19.2 Single Slater Determinant .............................................. 417
19.3 The Hohenberg-Kohn Theorem ............................................. 420
19.4 The Kohn—Sham Equations ................................................ 422
A Complex Nnmbers and Quantum Mechanics ....................................... 428
B Atomic Units ................................................................ 429
B.1 The International System of Units (SI)................................... 429
B.2 Atomic Units ............................................................ 430
C Curvilinear Coordinate Systems .............................................. 434
D Surface Spherical Harmonics and Special Functions ........................... 440
E The delta-Function ......................................................... 442
Index ......................................................................... 451
|