J.P. Dahl : Introduction to the Quantum World of Atoms and Molecules. |
Jens P. Dahl : Introduction to The Quantum World of Atoms and Molecules. World Scientific Publishing, Singapore, 2001. Price (Oct. 2002) $ 77.00 - EUR 83.50 |
Contents Preface ....................................................................... v 1 The Rise of Atomic Theory ................................................... 1 1.1 Early Atomic Theories ................................................... 2 1.2 The Chemical Atom ...................................................... 3 1.3 The Kinetic Molecule .................................................... 4 1.4 The Spectroscopic Atom .................................................. 7 1.5 Antiatomism ............................................................. 9 1.6 The Discovery of the Electron. The Planetary Atom ....................... 10 1.7 The Constituents of Atoms and Molecules. The Modern View ................ 13 1.8 External Interactions. Photons .......................................... 16 2 The Birth of Quantum Mechanics .............................................. 20 2.1 Black-Body Radiation and Planck's Discovery ............................. 21 2.2 Photons and the Photoelectric Effect .................................... 27 2.3 The Photon is a Relativistic Particle ................................... 31 2.4 The Heat-Capacity Problem ............................................... 33 2.5 Bohr's Theory of the Hydrogen Atom ...................................... 37 2.6 De Broglie Waves ........................................................ 43 3 Wave Mechanics .............................................................. 50 3.1 The Time-Dependent Schrödinger Equation ................................. 51 3.2 The Time-Independent Schrödinger Equation ............................... 54 3.3 Schrödinger Operators ................................................... 55 3.4 The Statistical Interpretation .......................................... 4 Particle in a Box ........................................................... 61 4.1 Introduction ............................................................ 62 4.2 The One-Dimensional Box ................................................. 65 4.3 Orthogonality of Wavefunctions .......................................... 70 4.4 Number of Nodes Versus Energy ........................................... 72 4.5 Inversion Symmetry ...................................................... 72 4.6 The Three-Dimensional Box ............................................... 75 4.7 The Concept of Degeneracy ............................................... 76 4.8 The Free-Electron Model ................................................. 82 4.9 Non-Stationary States ................................................... 87 5 Quantum-Mechanical Operators ................................................ 93 5.1 The Bra-Ket Notation .................................................... 94 5.2 Linear Operators. The Commutator ........................................ 97 5.3 Hermitian Operators. Hermitian Conjugation .............................. 101 5.4 Some Properties of Hermitian Operators .................................. 107 5.5 Expectation Values and Uncertainties .................................... 111 5.6 The Particle in a Box Revisited ......................................... 114 5.7 Commuting Hermitian Operators ........................................... 117 5.8 The General Uncertainty Principle ....................................... 120 5.9 Quantum Theory and Measurements ......................................... 121 5.10 Matrix Algebra ......................................................... 125 6 The Free Particle ........................................................... 133 6.1 The Stationary States of the Free Particle .............................. 134 6.2 Non-Stationary States of the Free Particle .............................. 139 6.3 The Gaussian Wave Packet ................................................ 143 6.4 From One to Three Dimensions ............................................ 145 7 The Harmonic Oscillator ..................................................... 147 7.1 Definitions ............................................................. 148 7.2 The Schrödinger Equation for the Harmonic Oscillator .................... 149 7.3 Solving the Schrödinger Equation ........................................ 151 7.4 The Wavefunctions ....................................................... 155 7.5 The Algebraic Method .................................................... 158 8 The Central Field Problem ................................................... 165 8.1 The Reduced Mass of a Two-Body System ................................... 167 8.2 Spherical Polar Coordinates ............................................. 171 8.3 Spherical Harmonics ..................................................... 174 8.3.1 The Dimensionless Angular-Momentum Operators ......................... 175 8.3.2 Looking for Common Eigenfunctions of ^l2 and ^lz ..................... 176 8.3.3 The Raising and Lowering Operators ................................... 178 8.3.4 The Quantum Number l ................................................. 180 8.3.5 A Phase Convention ................................................... 181 8.3.6 The Analytical Expressions ........................................... 183 8.4 The Radial Function P(r) ................................................ 186 9 The Hydrogen Atom .......................................................... 192 9.1 The Effective Potential. General Notation ............................... 193 9.2 The Radial Equation for the Hydrogen-Like Atom .......................... 195 9.3 The Normalized Radial Functions ......................................... 201 9.4 Radial Probability Densities ............................................ 203 9.5 The Complete Wavefunctions .............................................. 208 10 The Spinning Electron ....................................................... 218 10.1 General Angular Momentum Theory ........................................ 220 10.2 Spin, Spin Functions and Spin-Orbitals ................................. 222 10.3 Properties of the Spin One-Half Operators .............................. 226 10.4 The One-Electron Atom in External Fields ............................... 230 10.4.1 The Hamiltonian With Spin .......................................... 230 10.4.2 The Hamiltonian With Spin Included ................................. 232 10.4.3 The Refined Hamiltonian ............................................ 234 10.5 The Zeeman Effect ...................................................... 239 10.6 The Pauli Equation ..................................................... 241 10.7 Angular-Momentum Theory and Rotations .................................. 242 11 The Periodic Table by Electron Counting ..................................... 24. 11.1 The Many-Electron Atom ................................................. 247 11.2 Neglect of Electron-Electron Repulsion ................................. 249 11.3 The Aufbau Principle ................................................... 252 11.4 Exchange Degeneracy .................................................... 254 11.5 Pauli's Exclusion Principle. Slater Determinants ....................... 257 11.6 Including Electron-Electron Repulsion .................................. 260 11.7 Slater Type Orbitals ................................................... 261 12 The Variational Method ..................................................... 270 12.1 Introduction .......................................................... 270 12.2 Variational Principles ................................................ 271 12.3 The Time-Independent Schrödinger Equation ............................. 272 12.4 The Variational Method ................................................ 274 12.5 The Linear Variational Method ......................................... 279 12.6 Factorization of Secular Problems ..................................... 283 13 Diatomic Molecules ......................................................... 289 13.1 The Adiabatic Approximation ........................................... 290 13.2 One-Electron Diatomic Molecules ....................................... 3.. 13.4 The Homonuclear Oase. Ground State of H ............................... 305 13.5 LCAO-MOs for Homonuclear Diatomics .................................... 314 13.6 Electronic Structure of Homonuclear Diatomics ......................... 318 14 Vibration and Rotation of Diatomic Molecules ............................... 324 14.1 Introduction .......................................................... 321 14.2 The Vibrational Motion ................................................ 321 14.3 The Vibrating Rotator ................................................. 334 14.4 On Rotational and Vibrational Spectra ................................. 338 15 Atomic Term Symbols ........................................................ 341 15.1 Orthonormal Bases and Unitary Matrices ................................ 342 15.2 Coupling of Two Angular Momenta ....................................... 345 15.2.1 The Uncoupled Representation ........................................ 345 15.2.2 The Coupled Representation .......................................... 348 15.3 Vector-Coupling Coefficients by the Construction Method .............. 351 15.3.1 Coupling of Two Spin ½ Particles .................................. 353 15.3.2 Coupling of Spin and Orbital Angular Momentum ..................... 355 15.4 Angular Momenta in Many-Electron Atoms ................................ 356 15.4.1 The Total Orbital Angular Momentum ................................ 357 15.4.2 The Total Spin Angular Momentum ................................... 358 15.4.3 L-S Coupling ...................................................... 360 15.4.4 Adding the Nuclear Angular Momentum. Bose—Einstein Condensates .... 362 16 Atomic Terms. Wavefunctions and Energies .................................... 367 16.1 Operating on Slater Determinants ....................................... 368 16.2 Term Wavefunctions ..................................................... 370 16.2.1 The Helium Atom .................................................... 370 16.2.2 The Carbon Atom ................................................... 373 16.3 Matrix Elements Between Slater Determinants ............................ 374 16.4 Energies of Atomic Terms ............................................... 380 16.4.1 The Helium Atom .................................................... 382 16.4.2 The Beryllium Atom ................................................. 383 16.4.3 The Carbon Atom ................................................... 384 16.5 Hund's Rules ........................................................... 385 17 Electronic Terms of Diatomic Molecules ...................................... 388 17.1 The Oxygen Molecule. Term Analysis ..................................... 388 17.2 The Oxygen Molecule. Real Wavefunctions ................................ 391 17.3 The Oxygen Molecule. Term Energies ..................................... 392 18 The Hartree-Fock Method ..................................................... 396 18.1 Hartree—Fock Method for a Single Determinant ........................... 397 18.2 Spin Restrictions ...................................................... 404 18.3 Conventional Hartree—Fock Theory ....................................... 407 18.4 The Correlation Problem ................................................ 410 19 Density-Functional .......................................................... 412 19.1 Reduced Density Matrices ............................................... 413 19.2 Single Slater Determinant .............................................. 417 19.3 The Hohenberg-Kohn Theorem ............................................. 420 19.4 The Kohn—Sham Equations ................................................ 422 A Complex Nnmbers and Quantum Mechanics ....................................... 428 B Atomic Units ................................................................ 429 B.1 The International System of Units (SI)................................... 429 B.2 Atomic Units ............................................................ 430 C Curvilinear Coordinate Systems .............................................. 434 D Surface Spherical Harmonics and Special Functions ........................... 440 E The delta-Function ......................................................... 442 Index ......................................................................... 451 |